Get your fraud questions answered and connect with product experts in our brand new Sifters community

How dbrand automated chargeback prevention

See Sift in action

Customizing products for today's consumers

Dbrand offers shoppers the opportunity to personalize their countless gadgets with unique, customizable, and precision-fitted vinyl wraps. With all of their products developed and manufactured in Toronto, dbrand’s distinctive and industry-changing virtual skin building interface puts the creative power in the hands of consumers. They turned to Sift to prevent chargebacks and automate fraud management.


More growth led to more chargebacks

As the leader in the custom skin market, dbrand’s business is growing rapidly, and the company saw fraudsters creeping onto the site as sales increased. The overwhelming majority of the fraud that dbrand experienced was bad users purchasing goods using stolen credit cards. The resulting chargebacks were costly, not only due to the high-quality product that was lost, the sale that was refunded, or the bank-levied chargeback fees, but also the hours of manual review and headaches that the fraud caused. Even as their chargeback rate reached a high of 2.18% in a single month and 4 customer service employees became dedicated fraud management experts, fraudsters continued to slip past their defenses. To mitigate the impact of fraud on their bottom line and brand, dbrand sought a smarter and more scalable solution.

With Sift, every aspect of our fraud workflow is automated. Fraud gets cut off right at the source.

Adam Ijaz, CEO


Custom machine learning catching unique fraud

After researching fraud management solutions, dbrand CEO Adam Ijaz was disappointed to find that many required ongoing manual review and hand-holding. In search of a vendor that could reduce their workload by growing efficiency, Adam discovered Sift, drawn by the product’s machine learning and automation features. Full integration took a week, and was extremely simple with Sift’s easy API and extensive documentation. With just one month of training, dbrand’s custom machine learning algorithms were catching fraud unique to the business, identifying returning and new fraudsters alike.

Sift saves you the hassle of chargebacks, combats stolen credit card purchases with ease, and‚ÄĒonce the machine-learning system has been trained‚ÄĒdoes it all automatically.

Adam Ijaz, CEO


A system so accurate it's automated

Adam’s team saw accurate and actionable results within 3 months of integrating with Sift. By using Sift Scores and the features that support automating fraud review within dbrand’s existing order management system, the team saved 200 hours a month in fraud investigation. Now, dbrand dedicates just 1 hour every month to fraud management, reviewing the system parameters and ensuring that results remain accurate. The fraud management team has since returned to their customer service roles, and zero people deal with fraud full-time; their system is so accurate that it’s in large part fully automated. By catching fraudsters early and identifying suspicious users before any product is lost, dbrand recovered about 2% in gross revenue and has saved well over a quarter million dollars in chargebacks and their associated costs.

Download this case study

Download now

Secure your business from login to chargeback

Stop fraud, break down data silos, and lower friction with Sift.

  • Achieve up to 285% ROI
  • Increase user acceptance rates up to 99%
  • Drop time spent on manual review up to 80%
Your information will be used to contact you about our service and subscribe you to our direct marketing communications. You can, of course, unsubscribe at any time. Please see our Website Privacy Notice.